Câu 22: Cho a, b, c là các số thực thỏa mãn a > 0, b > 0 và $f\left( x \right) = a{x^2} + bx + c \ge 0$ với mọi $x\in R.$ Tìm giá trị nhỏ nhất ${F_{\min }}$ của biểu thức $F = \frac{{4a + c}}{b}.$
Chọn một đáp án
Câu hỏi: Câu 22: Cho a, b, c là các số thực thỏa mãn a > 0, b > 0 và $f\left( x \right) = a{x^2} + bx + c \ge 0$ với mọi $x\in R.$ Tìm giá trị nhỏ nhất ${F_{\min }}$ của biểu thức $F = \frac{{4a + c}}{b}.$
A
B
C
D