Đề thi thử học kỳ 2 môn Toán lớp 12 online - Mã đề 12

Đề thi thử học kỳ 2 môn Toán lớp 12 online - Mã đề 12

Progress:
0%

Đề thi thử học kỳ 2 môn Toán lớp 12 online - Mã đề 12

Group 1

Thí sinh đọc kỹ đề trước khi làm bài.

1

Câu 1: Cho hàm số $y = f\left( x \right)$ liên tục trên đoạn $\left[ {a;b} \right]$. Công thức diện tích S của hình phẳng giới hạn bởi đồ thị hàm số $y = f\left( x \right)$, trục hoành và hai đường thẳng $x = a,$ $x = b$ là:

2

Câu 2: Nghiệm phức có phần ảo dương của phương trình ${z^2} - 2z + 5 = 0$ là:

3

Câu 3: Cho hình phẳng $\left( H \right)$ được giới hạn bởi các đường $x = 0,$ $x = \pi ,$ $y = 0$ và $y =  - \cos x$. Thể tích V của khối tròn xoay tạo thành khi quay $\left( H \right)$ xung quanh trục Ox được tính theo công thức:

4

Câu 4: Trong không gian Oxyz, cho điểm $A\left( {1; - 4; - 3} \right)$ và $\overrightarrow n  = \left( { - 2;5;2} \right)$. Phương trình mặt phẳng $\left( P \right)$ đi qua điểm A và nhận $\overrightarrow n $ làm vecto pháp tuyến là

5

Câu 5: Họ nguyên hàm của hàm số $f\left( x \right) = 3{x^2} - 2x + 3$ là:

6

Câu 6: Cho hai hàm số $y = f\left( x \right),$ $y = g\left( x \right)$ liên tục trên đoạn $\left[ {a;b} \right]$. Công thức tính diện tích hình phẳng giới hạn bởi hai đồ thị hàm số trên và các đường thẳng $x = a,$ $x = b$ là:

7

Câu 7: Cho hàm số $y = f\left( x \right)$ liên tục trên $\left[ {1;9} \right]$, thỏa mãn $\int\limits_1^9 {f\left( x \right)dx = 7} $ và $\int\limits_4^5 {f\left( x \right)dx = 3} $. Tính giá trị biểu thức $P = \int\limits_1^4 {f\left( x \right)dx + } \int\limits_5^9 {f\left( x \right)dx.} $

8

Câu 8: Trong không gian Oxyz, cho điểm $A\left( {2;3;5} \right)$. Tìm tọa độ điểm A’ là hình chiếu vuông góc của A lên trục Oy.

9

Câu 9: Trong không gian Oxyz, viết phương trình đường thẳng đi qua điểm $A\left( {1;2;3} \right)$ và có vecto chỉ phương $\overrightarrow u  = \left( {2; - 1; - 2} \right).$

10

Câu 10: Gọi ${z_1};\,\,{z_2}$ là hai nghiệm của phương trình $2{z^2} + 10z + 13 = 0$, trong đó ${z_1}$ có phần ảo dương. Số phức $2{z_1} + 4{z_2}$ bằng

11

Câu 11: Số phức $z = \frac{{5 + 15i}}{{3 + 4i}}$ có phần thực là

12

Câu 12: Trong không gian Oxyz, một vecto pháp tuyến của mặt phẳng $\frac{x}{{ - 5}} + \frac{y}{1} + \frac{z}{{ - 2}} = 1$ là:

13

Câu 13: Phần thực của số phức $\left( {2 - i} \right)\left( {1 + 2i} \right)$ là:

14

Câu 14: Cho các số phức ${z_1} = 3 + 4i,$ ${z_2} = 5 - 2i$. Tìm số phức liên hơp $\overline z $ của số phức $z = 2{z_1} + 3{z_2}$.

15

Câu 15: Trong không gian Oxyz, các vecto đơn vị trên các trục Ox,Oy,Oz lần lượt là $\overrightarrow i ,\,\,\overrightarrow j ,\,\,\overrightarrow k $ cho điểm $M\left( {3; - 4;12} \right)$. Mệnh đề nào sau đây đúng?

16

Câu 16: Trong không gian Oxyz, đường thẳng đi qua điểm $A\left( {3;1;2} \right)$ và vuông góc với mặt phẳng $x + y + 3z + 5 = 0$ có phương trình là

17

Câu 17: $\int {{e^{ - 2x + 1}}dx} $ bằng

18

Câu 18: Tính môđun $\left| z \right|$ của số phức $z = \left( {2 + i} \right){\left( {1 + i} \right)^2} + 1$.

19

Câu 19: Cho ${z_1};\,\,{z_2}$ là hai nghiệm phức của phương trình ${z^2} - 2z + 5 = 0$, biết ${z_1} - {z_2}$ có phần ảo là số thực âm. Tìm phần ảo của số phức ${\rm{w}} = 2z_1^2 - z_2^2$.

20

Câu 20: Cho tích phân $I = \int\limits_1^e {\frac{{2\ln x + 3}}{x}dx} $. Nếu đặt $t = \ln x$ thì:

21

Câu 21: Biết $\int\limits_1^3 {\frac{{2x - 3}}{{x + 1}}dx}  = a\ln 2 + b$ với $a,\,\,b$ là các số hữu tỉ. Khi đó ${b^2} - 2a$ bằng

22

Câu 22: Cho hai số phức ${z_1} =  - 1 + 2i;$ ${z_2} = 1 + 2i$. Tinh $T = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}$

23

Câu 23: Biết $\int\limits_0^{\frac{\pi }{4}} {\left( {{{\tan }^2}x + 2{{\tan }^8}x} \right)dx =  - \frac{a}{b} + \frac{\pi }{c}} $ với $a,\,\,b,\,\,c \in \mathbb{N}$, phân số $\frac{a}{b}$ tối giản. Tính $T = a + b + c.$

24

Câu 24: Trong không gian Oxyz, cho mặt cầu $\left( S \right)$ tâm $I\left( {1;2;1} \right)$ và cắt mặt phẳng $\left( P \right):2x - y + 2z + 7 = 0$ theo một đường tròn có đường kính bằng 8. Phương trình mặt cầu $\left( S \right)$ là:

25

Câu 25: Trong không gian với hệ trục tọa độ $Oxyz$, cho điểm $I\left( {3;4; - 5} \right)$ và mặt phẳng $\left( P \right)$ có phương trình $2x + 6y - 3z + 4 = 0$. Phương trình mặt cầu $\left( S \right)$ có tâm $I$ và tiếp xúc với $\left( P \right)$ là:

26

Câu 26: Trong không gian Oxyz, biết $\overrightarrow n  = \left( {a;b;c} \right)$ là vecto pháp tuyến của mặt phẳng qua $A\left( {2;1;5} \right)$ và chứa trục Ox. Tính $k = \frac{b}{c}.$

27

Câu 27: Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số $y = {x^3} - x$ và đồ thị hàm số $y = x - {x^2}$.

28

Câu 28: Diện tích của hình phẳng giới hạn bởi đồ thị hàm số $y = {x^2} - 4$ và các đường thẳng $y = 0,$ $x =  - 1,$ $x = 5$ bằng:

29

Câu 29: Trong không gian Oxyz, cho bốn điểm $A\left( {0;1; - 1} \right),$ $B\left( {1;1;2} \right),$ $C\left( {1; - 1;0} \right)$ và $D\left( {0;0;1} \right)$. Mặt phẳng $\left( \alpha  \right)$ song song với mặt phẳng $\left( {BCD} \right)$ và chia khối tứ diện ABCD thành hai khối đa diện sao cho tỉ số thể tích của khối đa diện có chứa điểm A và khối tứ diện ABCD bằng $\frac{1}{{27}}$. Viết phương trình mặt phẳng $\left( \alpha  \right)$.

30

Câu 30: Trong không gian Oxyz, cho ba điểm $A\left( {0;0;1} \right),$ $B\left( {0;2;0} \right),$ $C\left( {3;0;0} \right)$. Gọi $H\left( {x;y;z} \right)$ là trực tâm của tam giác ABC. Tính $k = x + 2y + z.$

31

Câu 31: Diện tích S của hình phẳng giới hạn bởi các đường $y = {e^{2x}},$ $y = 0,$ $x = 0,$ $x = 2$ được biểu diễn bởi $\frac{{{e^a} - b}}{c}$ với $a,\,\,b,\,\,c \in \mathbb{Z}$. Tính $P = a + 3b - c.$

32

Câu 32: Tìm nguyên hàm $F\left( x \right)$ của hàm số $f\left( x \right) = {\tan ^2}x$ biết phương trình $F\left( x \right) = 0$ có một nghiệm bằng $\frac{\pi }{4}.$

33

Câu 33: Trong không gian Oxyz, viết phương trình đường thẳng $\Delta $ đi qua hai điểm $A\left( {1;4;4} \right)$ và $B\left( { - 1;0;2} \right).$

34

Câu 34: Trong không gian Oxyz,  cho đường thẳng $d:\frac{{x - 1}}{{ - 1}} = \frac{{y + 1}}{2} = \frac{{z + 1}}{{ - 1}}$. Đường thẳng đi qua điểm $M\left( {2;1; - 1} \right)$ và song song với đường thẳng d có phương trình là:

35

Câu 35: Trong không gian Oxyz, tính diện tích S của tam giác ABC, biết $A\left( {2;0;0} \right),$ $B\left( {0;3;0} \right)$ và $C\left( {0;0;4} \right)$

36

Câu 36: Cho hình phẳng (H) giới hạn bởi đồ thị các hàm số $y = \sqrt x \cos \frac{x}{2},\,\,y = 0,\,\,x = \frac{\pi }{2},\,\,x = \pi $. Tính thể tích $V$ của khối tròn xoay sinh ra khi cho hình phẳng $\left( H \right)$ quay xung quanh trục Ox.

37

Câu 37: Số phức liên hợp $\overline z $ của số phức $z = \frac{{4 + 6i}}{{1 - i}}$ là:

38

Câu 38: Tính tích phân $I = \int\limits_2^7 {\sqrt {x + 2} dx} .$

39

Câu 39: Trong không gian Oxyz, cho hai đường thẳng $\frac{{x - 2}}{1} = \frac{{y - 4}}{1} = \frac{z}{{ - 2}}$ và $\frac{{x - 3}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{{z + 2}}{{ - 1}}$. Gọi M là trung điểm đoạn vuông góc chung của hai đường thẳng trên. Tính độ dài đoạn thẳng OM.

40

Câu 40: Gọi S là diện tích hình phẳng giới hạn bởi các đường $y =  - {3^x},$ $y = 0,$ $x = 0,$ $x = 4$. Mệnh đề nào sau đây đúng?

00
:
00
:
00

Thứ tự câu hỏi